| Name: | Hour: | Date: | | | |---|---|------------------|--|-------| | Lesson 11.1: Day 2: Which color M&N | II is the m | ost com | mon part | two? | | The company that makes milk chocolate M&Ms claims 13% Brown, 14% Yellow, 20% Orange, 16% Green, 2 | | | | | | 1. Record the information from yesterday. | | | | | | Observed values: Brown: Yellow: Orange: | Green: | Blue: | Red: | _ | | Expected values: Brown: Yellow: Orange: | Green: | Blue: | Red: | | | Test statistic: $\chi^2 =$ | | | | | | 2. Check conditions: | | | | | | Random: M n M's were randomly sa | moled. | | | | | Large counts: Which expected count is the lowest? Are a | II of the expec | _ | | | | Lanest Expected: Brown: > 5 | 5 All ex | spected | countr. | 551 | | 3. Calculate the P-value. | | | | | | For this test $df = n - 1$, but n represents the number of cate | egories (colors | s). | | | | What is the <i>df</i> for this test? | | | | | | What is the test statistic for this test? $\chi^2 =$ | | | | | | Use Table C to find the P-value: Go to referred the closest Values to you | w dfar
ur X², r | nd move
match | to tail p | 10b. | | 4. Make a conclusion. Use $\alpha = 0.05$. ASSLIMING the Campany's claim is time, there is $\alpha = \rho$ as χ^2 value of ρ or greater ρ is ρ is not statistically significant. We | med co
robabili
Durely by
le fail to | lar disty of a | tribution
getting
nce. This
eject the | n | | 5. Which color M&M had an observed value the farthest fro | m the expecte | ed? | nypoth | 2010 | | expected. | | , | TheStats | Medic | | Name: _ | Hour: Date: | |--|--| | | ata provide significant evidence that the company was lying about the distribution of M&Ms? Use $\alpha\!=\!0.05$ | | STATE:
Ho:
Ha: | Hypotheses: The claimed color distribution is true. The claimed color distribution is not true. | | PLAN: | Name of procedure: chi-square test for goodness of fit χ^2 G.O.F. | | L | Check conditions: Random: The MnM's Were randomly sampled
arge Counts: All expected counts > 5 Lawest: - > 5 | | DO: | Specific Formula: $\chi^2 = \frac{(0 \text{ bsen})^2}{\text{expected}}$ Work: $\chi^2 = \frac{(0 - E)^2}{E} + \dots + \frac{(0 - E)^2}{E} = \frac{(0 - E)^2}{E}$ | | | Test statistic: χ^2 = | | CONCI
Purely
We in
What parts
Pava | LUDE: ASSUMING the Claimed color distribution is true is a probability of getting a \times_= or more y by chance. This is/is not statistically significant. Illy fail to reject the null and can / can / cannot conclude of the usual 4-step process are missing in this test? UNDE: ASSUMING the Claimed color distribution is true P-value: P-val | | Name: | | Hour | :: Date: | | |--|--|---|---|--| | Lesso | n 11.1: Day 2: Chi- | Square Test for Go | oodness of Fit: 4 | Steps | | Orando | and itions
counts: | | 2(df) -Alwa
Right
- Stats | ys
skewd
a+o. | | | counts:
fed counts>5
est count. | LT#3 4 steps
State, plan, do,
If significant, d | 4 Follow Up
conclude.
liscuss which I | values were | | | Check | our Understar | nding largest | contributor | | Arizona drivers
the sun. To se
distribution of
Valley. The tal | n, sunny weather in Arizons might opt for a lighter content of care if the distribution of care colors across North Aries shows the distribution car color in North Americal | ona affect a driver's choice olor with the hope that it colors in Oro Valley, new America, she selected a more car color for Cass's selected and of car color for Cass's selected and other careful c | ce of car color? Cass
will reflect some of the
ar Tucson, is differer
random sample of 30
sample in Oro Valley | s thinks that
he heat from
nt from the
00 cars in Oro | | | Color White Oro Valley sample 84 | Black Gray Silver Red Blue
38 31 46 27 29
18% 16% 15% 10% 9% | Green Other Total 6 39 300 | ¥ | | | ita provide convincing ev
American distribution? | ridence that the distribution | on of car color in Ord | Valley differs | | PLAN: Nam Chec Large Counts: La | listribution in Country and In Country and In Oro Value of procedure: chi-squa | re test for goodness of firm: "Randam count = 300×100 mts $35 35 | same as Not $\chi^2 = 30$ of $\chi^2 = 21 \approx 5$ Picture: 9.92 Test statistic: χ^2 | $300'$ $\pi^{2}(7)$ 29.92 $= 29.92$ | | CONCLUDE: Pudence Is not 2. If there is co analysis. The Fram 10 H 16 ray 11 W | Since the p-va
against the null
no same in ord
invincing evidence of a d
largest compa
ner " which was
nich was 17 be | alue is 2.05, h
II. Weigect the nu
Valley as it is in | P-value: Less the
Le have can value on of car color, performed the statistical statistics. The expected and the statistics of the statistics of the expected and the expected and the statistics of the expected and expec | inicing
the distribu |