

Lesson 11.2: Day 1: Does gummy bear brand matter?

Is the distribution of gummy bear color the same for Haribo gummy bears and Meijer gummy bears? We'll collect data as a class and determine if we have convincing evidence of a difference.

1. Add your data to the board and fill in the table below with the class totals.

Observed:		Brand		
		Haribo	Meijer	Total
Color	Red			
	Green			
	Yellow			
	Orange			
	White			
	Total			

- 2. How many samples do we have? What population are they from? Explain.
- 3. How many variables are we examining? Explain.
- 4. As a class, write down hypotheses for a significance test.

H₀:

H_a:

5. Now we will use a chi-square test to test if there is a difference between the two populations. We first need to find the expected values. Complete the table below.

Expected:		Brand		
		Haribo	Meijer	Total
	Red			
	Green			
Color	Yellow			
	Orange			
	White			
	Total			

Name:	Hour:	Date:		
6. Use your work on the front page to complete a 4 step significance test.				
STATE: Hypotheses:	Significance	e level:		

PLAN: Name of procedure: <u>Chi-square test for homogeneity</u> Check conditions:

DO: Specific Formula:

Work:

df = (rows - 1)(columns - 1)

Picture:

Test statistic:

P-value:

CONCLUDE:

7. Explain how this test is different from a chi-square test for goodness of fit?

Lesson 11.2: Day 1: Chi-Square Test for Homogeneity

Important ideas:

Check Your Understanding

For a class project, Abby and Mia wanted to know if the gender of an interviewer could affect the responses to a survey question. The subjects in their experiment were 100 males from their school. Half of the males were randomly assigned to be asked, "Would you vote for a female president?" by a female interviewer. The other half of the males were asked the same question by a male interviewer. The table shows the results.

	Male	Female	Total
Yes	30	39	69
No	8	3	11
Maybe	12	8	20
Total	50	50	100
	Yes No Maybe Total	MaleYes30No8Maybe12Total50	MaleFemaleYes3039No83Maybe128Total5050

Gender of interviewer

- (a) State the appropriate null and alternative hypotheses.
- (b) Show the calculation for the expected count in the Male/Yes cell. Then provide a complete table of expected counts.

(c) Calculate the value of the chi-square test statistic.

