\qquad Date: \qquad

Lesson 11.2: Day 1: Does gummy bear brand matter?

Is the distribution of gummy bear color the same for Haribo gummy bears and Meijer gummy bears? We'll collect data as a class and determine if we have convincing evidence of a difference.

1. Add your data to the board and fill in the table below with the class totals.

Observed:

2. How many samples do we have? What population are they from? Explain.
3. How many variables are we examining? Explain.
4. As a class, write down hypotheses for a significance test.
H_{0} :
H_{a} :
5. Now we will use a chi-square test to test if there is a difference between the two populations. We first need to find the expected values. Complete the table below.

Expected:
Brand
Haribo

Meijer	Total	

\qquad Hour: \qquad Date: \qquad
6. Use your work on the front page to complete a 4 step significance test.

STATE: Hypotheses:
Significance level:

PLAN: Name of procedure: Chi-square test for homogeneity Check conditions:

DO: Specific Formula:

Work:

$$
\mathrm{df}=(\text { rows }-1)(\text { columns }-1)
$$

Picture:

Test statistic:
P-value:

CONCLUDE:

7. Explain how this test is different from a chi-square test for goodness of fit?
\qquad Hour: \qquad Date: \qquad

Lesson 11.2: Day 1: Chi-Square Test for Homogeneity

Important ideas:

Check Your Understanding

For a class project, Abby and Mia wanted to know if the gender of an interviewer could affect the responses to a survey question. The subjects in their experiment were 100 males from their school. Half of the males were randomly assigned to be asked, "Would you vote for a female president?" by a female interviewer. The other half of the males were asked the same question by a male interviewer. The table shows the results.

	Gender of interviewer			
		Male	Female	Total
	Yes	30	39	69
Response to question	No	8	3	11
	Maybe	12	8	20
	Total	50	50	100

(a) State the appropriate null and alternative hypotheses.
(b) Show the calculation for the expected count in the Male/Yes cell. Then provide a complete table of expected counts.
(c) Calculate the value of the chi-square test statistic.

