| | | | | | of . | | | | | | |-------------|-------------|--|---------------|-------------------------|--|------------------------------|-----------------------|------------------------------|-----------------------------------|-----------------------------| | | Nam | e: | | | | | Hou | r: Da | te: | | | | 7 | Lesson 6.1: Day 2: How much do you get paid? | | | | | | | | | | | Te le | 22 | 1 | | | | | | MINI | MM | | | 20 | Way! | , | | 3 | | | | WA | | | | Suna | 7 | • | | | | | | | | | | Irom | a pag to | got a
dete | rmine yo | and each our wage for | day your bos
the day. Let | s (Mrs. 0
the rand | Ballas) draw
Iom variable | s a slip of par
x = daily wa | per
ge (\$ | | Ĺ | per h | | is you | ir wage | for the day? | Add | d | | | | | 2 | | and co | omple | ete the ta | ble below. | Au | a your da | ata to the ta | ble on the bo | ard | | 201 | 7 | X | | 1 | 5 | 7 | 10 | 15 | 25 | | | 70, | | Probal | oility | 5/22 | 2/22 | 10/22 | 3/22 | . %2 | 422 | | | | 2 | . Calcu | late a | and intere | oret the exp | ected value o | | | .00 | | | | | X | = | 7.5, | If we | draw | man | y mar | iy was | jes, | | | | the | ave | erage | wage | \$7.50 | Value | Distance from mean | (Distance from mean) ² | Weighted
(Distance | | | 3 | . Necai | HOII | rchaptei | i that stan | dard // Stance from | | moni incan | nom mean) | from the mean) ² | | / 8 | 16.0 | the m | ean. (| Complet | e the table to the property in | to calculate | 1 | -6.5 | 42.25 | 9.60 | | 14 | | distrib | ution | | · | • | 5 | -2.5 | 6.25 | .568 | | | 4 | . Interp | ret th | e standa | ırd deviatior | ո. | 7 | 7.5 | .25 | .114 | | | 140 | The | M | ages | typica | ally | 10 | 2.5 | 6.25 | .852 | | * · · · · · | Y Y | he n | 100 | 3 4 | 0.24 +
\$7.5 | Fran | 15 | 7.5 | 56.25 | 0 | | | 5. | | | • | s she would | | 25 | 17.5 | 306.25 | 27.8 | | , | ٦. | assigr
any a | n wag
moun | es so that from \$ | at employe
10 to \$20 a | es could get
nd all are | | | Total = | 38.934 | | M | 10 | equal | ly like | ly. Draw
ility distr | a graph to | represent | | | SD = | | | 2/4 | 3/ | <u> </u> | | 9/1/ | | ۱ ۱ | *** | 4 | | | | 3 | | 0 | | 9110 | | | | | | | | ζ, | 6. | What | o Visithe | 2.5
probab | o
ility that an | 20
employee m | akes he | tween \$12 : | and \$12 502 | | | | . 0. | W | att | 7 = 1 | 2.50-1 | 2 = 0.5 | 0 | | | | | | | Hci | an- | += ' | 110 | | | = | 0.50x10 | | | | | - | J . | | | | | The second of the second | | | | Name: | Hour: Date: | | | | | | | | | | |---|---|--|--|--|--|--|--|--|----------------------------------|---| | Lesson 6.1 Day 2- Pro | bability and Continuous Random Variables | | | | | | | | | | | Important ideas:
LT#1 Standard I
Of a Discrete Pro | peviation LT#2 Probability for
b. dist. Continuous random variables. | | | | | | | | | | | 0=\\\\\(\(\frac{1}{2}\)\(\(\frac{1}{2}\)\(\frac{1}{2}\) | Pi Find area under curve: Vi uniform Normal N(U, 0) | | | | | | | | | | | 02=Variance | | | | | | | | | | | | Chec | ck Your Understanding | | | | | | | | | | | The heights of young women can be modeled by a Normal distribution with mean μ = 64 inches and standard deviation σ = 2.7 inches. Suppose we choose a young woman at random and let Y = her height (in inches). 1. What type of variable is Y, discrete or continuous? Explain. Continuous, all heights are possible. 2. Interpret the standard deviation. The heights typically wany by 27 in from the mean height of Win. | 3. Find $P(Y \le 63)$. Interpre | 27) 7= Y-M | | | | | | | | | | | Jelin . | Z = 63-69 female is less than or equal to | | 63 64 | = -,37 -> .555/ | | | | | | | | | | | 4. Find $P(68 \le Y \le 70)$. Integration | | | | | | | | | | | | N(64, | 2.7) $Z = \frac{70-64}{2.7} = 2.22 \rightarrow .9868$ | | | | | | | | | | | | $Z = \frac{68-64}{2.7} = 1.48 \rightarrow9306$ | | | | | | | | | | | 64 68 70 | ,0562 | | | | | | | | | | | There is a .0562 prob. | that a randomly selected female is between | | | | | | | | | |