| | Name: Hour: Da | | | | | | | e: | | | | | | |--|---|---|---|-------------------------|---------------------------|----------------------------|----------------------------|----------------------------|------------|--|--|--|--| | | | | Lesso | on 6.2: E | ay 1: Ti | me for | a Raise | | 2 | | | | | | | Mrs. Gallas' employees have been working very hard and it's time she gives them a raise. She is trying to decide if she should give everyone a \$10 raise (add \$10 per hour) or double everyone's wage (multiply by 2). 1. Copy the data collected from yesterday's lesson below. | | | | | | | | | | | | | | | (1. | | | | | | | | | | | | | | previous
lesson's
data | | X | 1 | 5 | 7 | 10 | 15 | 25 | | | | | | | | 1 | Probability | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | | | | | | | | | | | | | | Mean: <u>M</u> | | • | Standard | Deviation: | 5 | _ | | | | | | | | 2. | To make a and calcula | decision at | oout what r
mean and | aise should
standard d | l be given,
eviation us | complete tl
ing your ca | ne tables be
liculator. | elow | | | | | | a. Option 1: Add \$10 per hour to all employees | | | | | | | | | | | | | | | aus the same as | 3 | X – Old
Wage | 1 | 5 | 7 | 10 | 15 | 25 | | | | | | | | 3 | Y - New
Wage | 11 | 15 | 17 | 20 | 25 | 35 | | | | | | | | 3-> | Probability | | | | | | | | | | | | | कि | 5 ' | Mean: <u>M</u> | +10 | Deviation: | viation: _ C | | | | | | | | | | How did adding a constant affect the mean and standard deviation? The mean IS added with \$10. | | | | | | | | | | | | | | | The standard deviation did not chan | | | | | | | | | | | | | | | | | Option 1: E | ouble the | wage of all | employees | | | 1 | 1 | | | | | | | ROP | X – Old
Wage | 1 | 5 | 7 | 10 | 15 | 25 | | | | | | | JS the | 7 | Z - New
Wage | 2 | 10 | 14 | 20 | 30 | 50 | | | | | | | | 3> | Probability | | | | | | | | | | | | | Society | 2 | Mean: <u>AM</u> Standard Deviation: <u>2</u> o | | | | | | | | | | | | | How did multiplying by a constant affect the mean and standard deviation? BOTH The mean 4 Standard deviation? MULTIPLEA BY 6 | | | | | | | | | | | | | | | Answe | 3.
WW | Which opti | on would y | ou prefer? | Why? | 11100/7 | ip heat | by c | ~ . | | | | | | WINA | Wy | | | New Control of the | | | | | | | | | | | Name: | | H | lour: | Date: | | | | | | | |--|--|--|---|---|--|--|--|--|--|--| | Lesson 6.2 Day 1– 7 | ransform | ning Prob | ability | Distribut | tions | | | | | | | Important ideas: Adding the Same to each value Shape: Stays the scentur: add c variability: stays to same | saine | Con | PV: IY | 1417/14 | same ach value by C ply by C $5)^2 = (20^2)^2$ | | | | | | | Check Your Understanding | | | | | | | | | | | | A large auto dealership keeps track of sales made during each hour of the day.
Let X = the number of cars sold during the first hour of business on a randomly selected Friday. Based on previous records, the probability distribution of X is as follows: | | | | | | | | | | | | Cars sold | 0 | 1 | 2 | 3 | | | | | | | | Probability | 0.3 | 0.4 | 0.2 | 0.1 | | | | | | | | Suppose the dealership's manager sold. Let Y = the bonus recesselected Friday. 1. Sketch a graph of the proprobability distribution of year of year of the proprobability distribution of year ye | bability distry. How do the standard of the provide of the mand is \$75 less | deviation of X heir shapes Mey coffee and hager's net than the bo | and a se compare doughnut profit T donus earn | parate grapes ally Viviantes s to prosper uring the fired. Descri | ective rst hour on a be the shape. | | | | | |