Name:

Date:

Class:

Main Ideas/Questions	Notes/Examples
PASCAL'S TRIANGLE	Pascal's triangle was a pattern of numbers that was discovered in the $13^{\text {th }}$ century. Each number in Pascal's triangle is the sum of the two numbers diagonally above it. All outside numbers are 1 . Complete rows 4 and 5 of Pascal's triangle below: Row $0 \rightarrow$ Row $1 \rightarrow$ Row $2 \rightarrow$ Row $3 \rightarrow$ 1 3 3 1 Row $4 \rightarrow$ Row $5 \rightarrow$
Expanding Binomials	Expand the binomial $(a+b)^{3}$: What do you notice about the coefficients?
THE BINOMIAL THEOREM	If n is a natural number, then $(a+b)^{n}=$ ${ }_{n} C_{0} \cdot a^{n} b^{0}+{ }_{n} C_{1} \cdot a^{n-1} b^{1}+{ }_{n} C_{2} \cdot a^{n-2} b^{2}+\ldots+{ }_{n} C_{n} \cdot a^{0} b^{n}=\sum_{k=0}^{n}{ }_{n} C_{k} \cdot a^{n-k} b^{k}$
Examples	Directions: Use the binomial theorem to expand each binomial.
	1. $(a+b)^{5}$

2. $(x+y)^{7}$

	3. $(c+d)^{10}$
Cosfficients Qther than 1	4. $(x-3)^{6}$
	5. $(2 m+n)^{7}$
	6. $(k+2)^{8}$
	7. $(3 p-2 q)^{5}$
Observations	In the binomial expansion of $(a+b)^{n}$: - The total number of terms is always \qquad - The exponent of a in the first term is \qquad - - The exponent of b in the last term is \qquad - The exponent of a \qquad from left to right. - The exponent of b \qquad from left to right. - The sum of the exponents in each term is \qquad . - The coefficients are \qquad and follow the row of \qquad

