Division - a shortcut for dividing a by a binomial of

- X cannot be of a degree than
- of has to be .
- (x-3) means $r=$
- $(x+3)$ means $r=$

1. up terms in order of
putting a where there is a
2. Take the of the
power of , and the from $(x-r)$, keeping the
3. Bring down your coefficient.
4.

your $1^{\text {st }}$ coefficient by .
5. Write the from step 4 under the
, then
6. the sum, by, write under , and then

> these steps
until all
7. The
represents the for. other \#s are the polynomial, which has degree than your polynomial.

* Theorem - the binomial is a of
the polynomial if there is
when you the into the polynomial.
This will also means that is a / /
So if you in to your, you will get

Algebra 2

Synthetic Division LL

Divide.

1) $\left(3 b^{3}+14 b^{2}+12 b+16\right) \div(b+4)$
2) $\left(4 r^{3}+19 r^{2}+20 r-1\right) \div(r+3)$
3) $\left(n^{3}-2 n^{2}+4 n+1\right) \div(n-1)$
4) $\left(a^{3}-17 a^{2}+71 a-1\right) \div(a-10)$
5) $\left(x^{3}-2 x^{2}-8 x-9\right) \div(x+1)$
6) $\left(n^{4}+8 n^{3}-7 n^{2}+28 n+95\right) \div(n+9)$
7) $\left(m^{4}-m^{3}-25 m^{2}+32 m+44\right) \div(m+5)$
8) $\left(2 x^{4}+14 x^{3}+18 x^{2}-21 x-9\right) \div(x+3)$
9) $\left(n^{4}-8 n^{3}+12 n^{2}-10 n+5\right) \div(n-1)$
10) $\left(x^{4}-9 x^{3}+10 x-90\right) \div(x-9)$
11) $\left(r^{4}-7 r^{3}-19 r^{2}+17 r-72\right) \div(r-9)$
12) $\left(n^{4}+9 n^{3}+12 n^{2}-48 n-40\right) \div(n+5)$
