COMPOSITIONS of FUNCTIONS Another method to combine functions is called a composition. Given f(x) and g(x), the composite function $(f \circ g)(x)$ is defined as:

Directions: Given $f(x) = x^3 + 8$, $g(x) = x - 1$, and $h(x) = 5x - 3$, find each function.	
11. $(f \circ g)(x)$	12. $(h \circ g)(x)$
13. $(f \circ h)(x)$	14. $(g \circ f)(x)$
Directions: Using the same functions above, find each function value.	
15. (g • h)(2)	16. (h • f)(-6)

© Gina Wilson (All Things Algebra), 2015

Perform the indicated operation.

1)
$$g(x) = x - 2$$

$$f(x) = x^{3} + 3x$$

Find $(g \circ f)(x)$

3)
$$g(x) = 4x^{2} + 3$$

$$f(x) = x^{3} - 3x$$

Find $(g \circ f)(x)$

5)
$$g(a) = a^{2} + 3$$

 $h(a) = 4a - 4$
Find $g(h(a))$.

. .

7)
$$f(a) = 3a + 3$$

 $g(a) = a^{3} + 4 + a$
Find $f(g(a))$

9)
$$f(n) = 2n^2 - 3$$

 $g(n) = -3n^2 - 2n$
Find $(f \circ g)(1)$

2)
$$f(x) = x^{2} - 3$$
$$g(x) = -3x^{3} + 4x$$
Find $(f \circ g)(x)$

4) $g(x) = x^{2} + 3$ f(x) = 3x - 2Find $(g \circ f)(x)$

6) g(x) = 4x + 2 $h(x) = x^{2} + 1$ Find g(h(x))

8) g(x) = 4x + 4h(x) = 2x + 3Find g(h(x))

10) g(x) = 2x - 3h(x) = 4x - 1Find g(h(-9))

A