Name:		Date:	
Topic:		Class:	
Main Ideas/Questions	Notes/Examples		
	1. Consider the polynomial function $f(x) = x^3 + x^2 - 4x + 41$.		
WARM-UP	a) Divide the function by $(x + 4)$.	b) Find f(-4)	
	2. Consider the polynomial function $f(x) = 7x^4 - 63x^3 + 9x - 80$.		
	a) Divide the function by $(x-9)$.	b) Find f(9)	
	• Remainder Theorem: If a polynomial function $f(x)$ is divided by		
REMAINDER	, then the	is	
THEOREM	Using synthetic division to evaluate a function is called		
	Use The Remainder Theorem (Synthe	elic Substitution) to evaluate $f(x)$ at c .	
EXAMPLES	3. $f(x) = x^4 + 8x^3 + 12x^2 - 7x - 14$; $c = $	=-3	
EVAILIBLES			
	4. The number of tickets sold during	the Oakdale High School football season	
	on $f(x) = x^3 - 14x^2 + 45x + 68$, where x is see the Remainder Theorem to find the		
APPLICATIONS	number of tickets sold during the	seventh game of the season.	

© Gina Wilson (All Things Algebro®, LLC), 2017

Name:		Date:	
Topic:		Class:	
Main Ideas/Questions	Notes/Examples		
FACTOR			
THEOREM			
	Directions: Use the Factor Theorem to determine which binomials are factors of the given function. Check all that apply.		
TEST FOR	1. $f(x) = x^3 - 31x + 30$	\Box $(x+1)$	
FACTORS		$\Box (x-5)$	
		$\Box (x+6)$	
	2 2 2 2 2 2		
	$2. \ f(x) = x^5 - 6x^4 - 17x^3 + 78x^2 - 56x$	$\Box (x-2)$	
	Directions: Use the Factor Theorem	and the given binomial to completely	
FACTORING	factor the polynomial function. The 3. $f(x) = x^3 + 3x^2 - 4x - 12$; $(x + 3)$	en, give fine zeros.	
& FINDING			
ZEROS			
ZEROS			

© Gina Wilson (All Things Algebra®, LLC), 2017

4. $J(x) = x^2 - 2x^2 - 19x + 20$; $(x - 5)$	$f(x) = x^3 - 2x^2 - 19x + 20$; (x)	(x-5)
---	--------------------------------------	-------

5.
$$f(x) = 2x^3 - 7x^2 - 53x + 28$$
; $(x-7)$

6.
$$f(x) = 9x^4 - 18x^3 - 73x^2 + 2x + 8$$
; $(x + 2)$

7.
$$f(x) = 3x^4 + 5x^3 - 42x^2 + 40x$$
; $(x+5)$

8.
$$f(x) = 4x^5 - 12x^4 - 13x^3 + 39x^2 + 9x - 27$$
; $(x-3)$