
Name:	Date:
Topic:	Class:

L	
Main Ideas/Questions	Notes/Examples
Rational Zeros	 Recall that a polynomial function of degree <i>n</i> can have at most real zeros. Real zeros can be or Rational zeros are those that can be written in the form of a
Rational Zero Theorem	The Rational Zero Theorem can be used to determine all possible rational zeros of a polynomial function. If $f(x) = a_n x^n + a_{n-1} x^{n-1} + + a_1 x + a_0$ has integer coefficients, then every rational zero of the function has the following form: $\frac{p}{q} =$
List Possible Rational Zeros	Directions: List all possible rational zeros of each function. 1. $f(x) = x^3 + 2x^2 - x + 2$ 2. $f(x) = x^5 + 9x^3 - 2x^2 - 18$ 3. $f(x) = 4x^3 - 4x^2 - x + 1$ 4. $f(x) = 3x^3 - x^2 - 18x + 16$ 5. $f(x) = 6x^5 - 8x^3 + 9x^2 - 12$ 6. $f(x) = 2x^3 + 11x^2 + 28x + 24$
	© Gina Wison (Al Things Algebra®, LLC), 2017

© Gina Wilson (All Things Algebra®, LLC), 2017

	> Step 1: List all possible rational zeros using the Rational Zero Theorem.	
Finding	> Step 2: Test the zeros using synthetic substitution.	
Rational	Step 3: When you find a zero that works, use the remainder to completely factor the polynomial. Then find the zeros.	
Zeros	Directions: List all possible rational zeros. Then, find the actual zeros.	
	7. $f(x) = x^3 + 3x^2 - 6x - 8$	
	8. $f(x) = x^3 - 2 x + 20$	
	9. $f(x) = x^4 + 3x^3 - 7x^2 - 27x - 18$	
	10. $f(x) = 2x^3 - 5x^2 - x + 6$	
	10. y(x) = 2x = 5x = x + 5	
	© Gina Wilson (All Things Algebro®, LLC), 2017	

