| LINEAR If c is a complex zero of a p | | LINEAR FACTORIZATON THEOREM: If c is a complex zero of a polynomial function, then | | |---------------------------------------|--|--|--| | | | | | | | *This means that all polynomial functions can be complete | | tions can be completely factored.* | | | Directions: Write an equation that could represent the function with the zeros. | | | | - 1 | USING ZEROS
to Write Polynomial
Functions | 1. 1, 2, 5 | 27, -1, 3 | | | * | 32, - ⁴ / ₃ , 2 | 4. ±√2, 1 | | | | 5 . 2√3, 1 | 6 . −6, 2 + √5 | | | , in | g 11 g 2 S | | | •1 | Examples with MULTIPLICITY | 7. 3 (mult. 2), 5 | 8. 0, 1, $\frac{5}{2}$ (mult. 2) © Ging Wilson (All Things Algebra®, LLC), 2013 | | | 91 (mult. 3), $\frac{5}{4}$ | | | |---------|--|-------------|--| 10. $-\frac{1}{2}$ (mult. 2), 4 (mult. 2) | | | | E | CONJUGATE ROOT THEOREM: If a polynomial function has a complex zero at $a + bi$, | | | | COMPLEX | | | | | | | | | | ZEROS | 11. 3i,-1+3i | 12. 2i, 2-i | | | | | | | | | , | 13. ,-i, 5+i | 14. 3+i, 4i | | | - | 13. ,-i,5+i | 511, 40 | | | . 7 | 2.1 | | | | 3. | | | | | | * | | | | | | | | | | | | |