LINEAR If c is a complex zero of a p		LINEAR FACTORIZATON THEOREM: If c is a complex zero of a polynomial function, then	
	This means that all polynomial functions can be complete		tions can be completely factored.
	Directions: Write an equation that could represent the function with the zeros.		
- 1	USING ZEROS to Write Polynomial Functions	1. 1, 2, 5	27, -1, 3
	*	32, - ⁴ / ₃ , 2	4. ±√2, 1
		5 . 2√3, 1	6 . −6, 2 + √5
	, in	g 11 g 2 S	
•1	Examples with MULTIPLICITY	7. 3 (mult. 2), 5	8. 0, 1, $\frac{5}{2}$ (mult. 2) © Ging Wilson (All Things Algebra®, LLC), 2013

	91 (mult. 3), $\frac{5}{4}$		
	10. $-\frac{1}{2}$ (mult. 2), 4 (mult. 2)		
E			
	CONJUGATE ROOT THEOREM: If a polynomial function has a complex zero at $a + bi$,		
COMPLEX			
ZEROS	11. 3i,-1+3i	12. 2i, 2-i	
	,		
	13. ,-i, 5+i	14. 3+i, 4i	
-	13. ,-i,5+i	511, 40	
. 7	2.1		
3.			
	*		