AP Statistics Chapter 12: More about Regression

12.1 - Inference for Linear Regression

Sample Computer Output for a Linear Data Analysis

Predictor	Coef	SE Coef	T	P
Constant	7.0647	0.2672	26.44	0.000
Years since	1970	0.36583	0.01048	34.91
S $=0.544467$	R-Sq $=98.9 \%$	R-Sq (adj) $=98.8 \%$		

- For the above, the linear equation is $y=7.0647+0.36583 x$
- The Standard Error of the slope $\left(\mathrm{SE}_{\mathrm{b}}\right)=0.01048$
- $S=$ the Standard Deviation of the Residuals. Since $S=0.544$, predictions of y from x based on this regression model will be off by an average of about 0.544.

Confidence Interval for the Slope of a Regression Line

The confidence interval for b has the familiar form

```
statistic }\pm\mathrm{ (critical value) · (standard deviation of statistic)
```

The t Interval for the slope $\beta: \quad b \pm t^{*} S E_{b}$
Where b is the slope, $S E_{b}$ is the standard error of the slope, and t is the critical value with $\mathrm{df}=\mathrm{n}-2$.

Performing a Significance Test for the Slope

$\mathbf{H}_{0}: \beta=\beta_{0}$ (some hypothesized value - often 0)
$\mathbf{H}_{\mathbf{a}}$: either $\beta<\beta_{0}$ or $\beta>\beta_{0}$ or $\beta \neq \beta_{0}$
Test Statistic: $t=\frac{b-\beta_{0}}{S E_{b}} \quad$ P-Value: Use the t distribution with $\mathrm{df}=n-2$

12.2 - Transformations to Achieve Linearity

Finding an Exponential Model for Data	Finding a Power Model for Data
Form: $y=A(B)^{x}$	Form: $y=A(x)^{B}$
Transformation: $(x, \log y)$	Transformation: $(\log x, \log y)$
Process:	Process:
1. LinReg $(x, \log y)$	1. LinReg $(\log x, \log y)$
2. Resulting line is $y=a+b x$	2. Resulting line is $y=a+b x$
3. Let $A=10^{a}$ and $B=10^{b}$	3. Let $A=10^{a}$ and $B=b$

