AP Statistics Chapter 6 – Discrete, Binomial & Geometric Random Variables

6.1: Discrete Random Variables

Random Variable

A random variable is a variable whose value is a numerical outcome of a random phenomenon.

Discrete Random Variable

A discrete random variable *X* has a *countable* number of possible values. Generally, these values are limited to integers (whole numbers). The probability distribution of *X* lists the values and their probabilities.

Value of X	X 1	X 2	X 3	•••	Xk
Probability	p 1	p 2	p 3	•••	$\mathbf{p}_{\mathbf{k}}$

The probabilities p_i must satisfy two requirements:

- 1. Every probability p_i is a number between 0 and 1.
- 2. $p_1 + p_2 + ... + p_k = 1$

Find the probability of any event by adding the probabilities p_i of the particular values x_i that make up the event.

Continuous Random Variable

A continuous random variable X takes all values in an interval of numbers and is *measurable*.

Mean (Expected Value) of A Discrete Random Variable

Suppose that X is a discrete random variable whose distribution is

Value of X	X 1	X 2	Х3	•••	Xk
Probability	p 1	\mathbf{p}_2	p ₃	•••	$\mathbf{p}_{\mathbf{k}}$

To find the **mean** of X, multiply each possible value by its probability, then add all the products:

$$\mu_x = E(x) = \sum_i x_i \cdot p_i = x_1 \cdot p_i + x_2 \cdot p_2 + \dots + x_k \cdot p_k$$

6.3: The Binomial Distributions

A binomial probability distribution occurs when the following requirements are met.

- 1. Each observation falls into one of just two categories call them "success" or "failure."
- 2. The procedure has a fixed number of trials we call this value n.
- 3. The observations must be *independent* result of one does not affect another.
- 4. The probability of success call it p remains the same for each observation.

Notation for binomial probability distribution

- n denotes the number of fixed trials
- k denotes the number of successes in the n trials
- p denotes the probability of success
- 1 p denotes the probability of failure

Binomial Probability Formula $P(X = k) = \frac{n!}{k!(n-k)!} (p)^k (1-p)^{n-k}$

How to use the TI-83/4 to compute binomial probabilities *

There are two binomial probability functions on the TI-83/84, binompdf and binomcdf

binompdf is a probability distribution function and determines P(X = k)

binomcdf is a *cumulative distribution function* and determines $P(X \le k)$

^{*}Both functions are found in the DISTR menu (2nd-VARS)

Probability	Calculator Command	Example (assume $n = 4$, $p = .8$)
P(X = k)	binompdf(n, p, k)	P(X = 3) = binompdf(4, .8, 3)
$P(X \le k)$	binomcdf(n, p, k)	$P(X \le 3) = binomcdf(4, .8, 3)$
P(X < k)	binomcdf(n, p, k - 1)	P(X < 3) = binomcdf(4, .8, 2)
P(X > k)	1 - binomcdf(n, p, k)	P(X > 3) = 1 - binomcdf(4, .8, 3)
$P(X \ge k)$	1 - binomcdf(n, p, k - 1)	$P(X \ge 3) = 1 - binomcdf(4, .8, 2)$

Mean (expected value) of a Binomial Random Variable

Formula: $\mu = np$ Meaning: Expected number of successes in *n* trials (think *average*)

Example: Suppose you are a 80% free throw shooter. You are going to shoot 4 free throws.

For n = 4, p = .8, $\mu = (4)(.8) = 3.2$, which means we expect 3.2 makes out of 4 shots, on average

6.3: The Geometric Distributions

A geometric probability distribution occurs when the following requirements are met.

- 1. Each observation falls into one of just two categories call them "success" or "failure."
- 2. The observations must be *independent* result of one does not affect another.
- 3. The probability of success call it p remains the same for each observation.
- 4. The variable of interest is the number of trials required to obtain the first success.*
- * As such, the geometric is also called a "waiting-time" distribution

Notation for geometric probability distribution

- n denotes the number of trials required to obtain the first success
- p denotes the probability of success
- 1 p denotes the probability of failure

Geometric Probability Formula

$$P(X = n) = (1-p)^{n-1}(p)$$

How to use the TI-83/4 to compute geometric probabilities *

There are two geometric probability functions on the TI-83/84, geometpdf and geometcdf geometpdf is a probability distribution function and determines P(X = n) geometcdf is a cumulative distribution function and determines $P(X \le n)$

^{*}Both functions are found in the DISTR menu (2nd-VARS)

Probability	Calculator Command	Example (assume $p = .8, n = 3$)
P(X = n)	geometpdf (p, n)	P(X=3) = geometpdf(.8, 3)
$P(X \le n)$	geometcdf(p, n)	$P(X \le 3) = \mathbf{geometcdf}(.8, 3)$
P(X < n)	geometcdf(p, n-1)	P(X < 3) = geometcdf(.8, 2)
P(X > n)	1 - geometcdf(p, n)	P(X > 3) = 1 - geometcdf(.8, 3)
$P(X \ge n)$	1 - geometcdf(p, n-1)	$P(X \ge 3) = 1 - geometcdf(.8, 2)$

Mean (expected value) of a Geometric Random Variable

Formula: $\mu = \frac{1}{p}$ Meaning: Expected number of *n* trials to achieve first success (*average*)

Example: Suppose you are a 80% free throw shooter. You are going to shoot until you make.

For p = .8, $\mu = \frac{1}{.8} = 1.25$, which means we expect to take 1.25 shots, on average, to make first