The Geometric Distribution 6.3

Consider the following situations:

- Flip a coin until you get a head.
- Roll a die until you get a 3.
- In basketball, attempt a three-point shot until you make a basket.

Notice...

- All of these situations involve counting the number of trials until an event of interest happens.
- The possible values of the number of trials is an infinite set because it is theoretically possible to proceed indefinitely without ever obtaining a success.

Commands of the Geometric!

- Each observation falls into one of just two categories, which for convenience we call "success" or "failure."
- The probability of a success, p, is the same for each observation.
- The observations are all independent.

```
אנבי ה' לא ת תרצח
ל לא יהיה לא ת תנאף
ל\mp@code{< תשא לא תאנב}
ֶכור את לא תא תענה
כבד את לא תחמד
```

- The variable of interest, X, is the number of trials required to obtain the first success.

Example

- An experiment consists of rolling a single die. The event of interest is rolling a 3 ; this event is called a success. The random variable is defined as $X=$ the number of trials until a 3 occurs. Is this a geometric setting?

Example

- Suppose you repeatedly draw cards without replacement from a deck of 52 cards until you draw an ace. There are two categories of interest: ace = success; not ace $=$ failure. Is this a geometric setting?

Rule for Calculating Geometric Probabilities

- If X has a geometric distribution with probability p of success and $(1-p)$ of failure on each observation, the possible values of X are $1,2,3, \ldots$. If n is any one of these values, then the probability that the first success occurs on the nth trial is:

$$
P(X=n)=(1-p)^{n-1} p
$$

Geometric Probability Distribution

- A probability distribution table for the geometric random variable is strange indeed because it never ends; the number of table entries is infinite.

X	1	2	3	4	5	\ldots
$P(X)$	p	$(1-p) p$	$(1-p)^{2} p$	$(1-p)^{3} p$	$(1-p)^{4} p$	\ldots

The mean of a Geometric Random

 Variable- If X is a geometric random variable with probability of success p on each trial, then the mean, or expected value, of the random variable, that is, the expected number of trials required to get the first success, is

$$
\mu=\frac{1}{p}
$$

Probability

- The probability that it takes more than n trials to see the first success is

$$
P(X>n)=(1-p)^{n}
$$

Or 1-geometcdf(p,n)

- The standard deviation is:

$$
\sigma=\sqrt{\frac{1-p}{p^{2}}}
$$

Calculator Commands

- Geometpdf (p, X) with p being the probability of success and X being the number of the trial on which the first success occurs.
- Geometcdf (p, X) where X is the maximum number of trials to get the first success.

Examples

- Brady, the pitcher, is starting a new inning. The probability that he'll throw a strike is still . 6
- What is the expected number of pitches needed to pitch a strike?
- What is the probability that he will throw his first strike on the $5^{\text {th }}$ pitch?
- What is the probability that it will take more than 5 pitches before he throws his first strike?

