Review:

Domain: DIXI: Domain, input values, \mathfrak{x}-values, independent variable
Range: ROYD: Range, output values, y-values, dependent variable

Find the domain and range of the following:

2.

x	y
-2	3
0	5
0	-16

3. $(0,7)(1,5)(8,-18)(3,7)$

Quadratic Functions:

A) Domain refers to all the x values and domain is read from left to right.

In a quadratic graph with arrows on both ends, the domain will always be:
All reals or can be written as:
$(-\infty, \infty)$ or $-\infty<x<\infty$
B) Range is all the y values and range is read from bottom to top.

In a quadratic graph with arrows on both ends;
Quadratic graphs that are frowning (upside down u) the range will always begin with negative infinity and end with a number: ($-\infty, k$-value] or $y \leq k$ value

Quadratic graphs that are smiling (regular u), the range will always begin with a number and end with positive infinity: [k value,∞) or $y \geq k$ value

End Behavior: A written description of what direction the ends of the graph are moving: (always written as two sentences): As $\mathrm{x} \rightarrow-\infty, \mathrm{y} \rightarrow$ \qquad
As $x \rightarrow, \infty, y \rightarrow$ \qquad
In a quadratic graph that is smiling: As $x \rightarrow-\infty, y \rightarrow \simeq$

$$
\text { As } x \rightarrow, \infty, y \rightarrow \underline{\infty}
$$

In a quadratic graph that is frowning: As $x \rightarrow-\infty, y \rightarrow-\infty$ As $x \rightarrow \infty, y \rightarrow-\infty$

So, if the arrow points up, then it is rising which means it is approaching ∞ So, if the arrow points down, then it is falling which means it is approaching - ∞

Example 1: $y=3(x-2)^{2}-4$
$a=$ \qquad $h=$ \qquad
\qquad
Opens: up or down
Vertex: \qquad
Max or Min: \qquad
Axis of symmetry: \qquad
X-Intercept: \qquad

End behavior: As $x \rightarrow-\infty, y \rightarrow$

$$
x \rightarrow \infty, y \rightarrow
$$

Example 2: $f(x)=-(x+1)^{2}+4$
$a=$ \qquad $h=$ \qquad
$k=$ \qquad

Opens: up or down
Vertex: \qquad
Max or Min: \qquad
Axis of symmetry: \qquad
X-Intercept: \qquad
Y - Intercept: \qquad

Rate of Change from $x=-3$ to $x=-2$
Domain: \qquad
Range: \qquad
End behavior: As $x \rightarrow-\infty, y \rightarrow$

$$
x \rightarrow \infty, y \rightarrow
$$

Example 3: $y=(x-4)^{2}$
$a=$ \qquad $h=$ \qquad
$k=$ \qquad

Opens: up or down
Vertex: \qquad
Max or Min: \qquad
Axis of symmetry: \qquad
X-Intercept: \qquad
Y - Intercept: \qquad
Rate of Change from $x=5$ to $x=6$
Domain: \qquad
Range: \qquad
End behavior: As $x \rightarrow-\infty, y \rightarrow$

$$
x \rightarrow \infty, y \rightarrow
$$

