H) Interval of Increase: this is where the graph is headed uphill;

For a smiling quadratic graph, this will be the right side of the u : (h value, ∞)
For a frowning quadratic graph, this will be the left side of the u : ($-\infty, h$ value)
I) Interval of Decreasing: this is where the graph is headed downhill;

For a smiling quadratic graph, this will be the left side of the $u:(-\infty, h$ value $)$
for a frowning quadratic graph, this will be the right side of the u : (h value, ∞)

Intervals of increase and decrease refer to the x values only. The h value wil be in both intervals since it is the turning point of the parabola (where it changes directions)

Examples

1. $f(x)=2(x-1)^{2}$
$a=$ \qquad
\qquad $\mathrm{k}=$ \qquad
Opens: up or down
Vertex: \qquad
Max or Min: \qquad
Axis of symmetry: \qquad
X-Intercept: \qquad
Y-Intercept: \qquad

Rate of Change from $x=1$ to $x=3$
Domain: \qquad
Range: \qquad
End behavior : As $x \rightarrow-\infty, y \rightarrow$

$$
x \rightarrow \infty, y \rightarrow
$$

Interval of increase: \qquad
Interval of Decrease: \qquad

Example 2: $f(x)=-(x+1)^{2}+4$
$\mathrm{a}=$ \qquad $h=$ \qquad
$\mathrm{k}=$ \qquad

Opens: up or down

Vertex: \qquad
Max or Min: \qquad
Axis of symmetry: \qquad
X-Intercept: \qquad
Y-Intercept: \qquad
Rate of Change from $x=-3$ to $x=-2$

Domain: \qquad
Range: \qquad
End behavior: As $x \rightarrow-\infty, y \rightarrow$

$$
x \rightarrow \infty, y \rightarrow
$$

Interval of Increase: \qquad
Interval of Decrease: \qquad

Example 3: $y=(x-4)^{2}$
$a=$
$h=$ \qquad $k=$

Opens: up or down
Vertex: \qquad
Max or Min: \qquad
Axis of symmetry: \qquad
X-Intercept: \qquad

Range: \qquad

Y - Intercept: \qquad
Rate of Change from $x=5$ to $x=6$
Domain: \qquad

End behavior: As $x \rightarrow-\infty, y \rightarrow$

$$
x \rightarrow \infty, y \rightarrow
$$

Interval of Increase: \qquad

Interval of Decrease: \qquad

