Steps to converting from standard $\left(y=a x^{2}+b x+c\right)$ to vertex form: $y=a(x-h)^{2}+k$
Step 1: Label a, b, c.
$A$ is the number next to the squared term
$B$ is the number next to the $x$ term

C is the constant (number only, no variable)
Using $2^{\text {nd }} \cos$, hit enter. Enter the $a, b$, and $c$ values and scroll until the $a, h$, and $k$ values appear on the screen.

Now enter the $h$ and $k$ values into vertex form.

1. $Y=x^{2}-12 x+38$
2. $Y=x^{2}-14 x+50$
3. $Y=x^{2}+12 x+13$
4. $Y=x^{2}+8 x-1$

Put in vertex form when $a \neq 1$ : Follow the same steps as above but the number in front of the squared term is the a value

1. $\mathrm{y}=2 x^{2}+12 \mathrm{x}+13$
2. $Y=2 x^{2}+16 x+10$
3. $Y=3 x^{2}-30 x+3$
4. $Y=2 x^{2}-4 x-1$
