Algebra 1

1)

Name

© 2020 KutaSoftware LLC. All rights reserved

Unit 4 Review Day 1

Complete each part of the question using the graph.

Axis of symmetry:

Vertex:

v- intercept:

Zeros:

Domain:

Range:

Increasing interval:

Decreasing interval:

End behavior: as $x \rightarrow __, f(x) \rightarrow __$

as $x \to f(x) \to$

Which choice below is the equation of the graph?

© 2020 KutaSoftware LLC All rights reserveld

A) $f(x) = -x^2 + 4x + 12$ B) $f(x) = x^2 - 4x + 12$ C) $f(x) = x^2 + 4x + 12$ D) $f(x) = -x^2 - 4x + 12$

Date

Complete each part of the question using the graph.

Axis of symmetry:

Vertex:

y- intercept:

Roots:

Domain:

Range:

Increasing interval:

Decreasing interval:

End behavior: as $x \to f(x) \to f(x)$

as $x \to _, f(x) \to$

Which choice below is the equation of the graph?

Made with Infinite Algebra 1

A) $y = (x - 4)^2 - 2$ B) $y = (x+4)^2 - 2$ C) $y = (x-2)^2 - 4$ D) $y = (x+2)^2 - 4$

Write the equation of the parabola above in

1) factored form

4)

Write the parabola above in factored form.

Answer: *y* = (_____)(_____)

2) standard form

3) vertex form

5) A quadratic function is shown below. Which equation best represents the axis of symmetry?

6) Two points on the graph of a quadratic function are shown on the grid below. What is the equation for the axis of symmetry of the graph of this function?

7)
$$y = -x^2 + 2x - 8$$

Axis of symmetry:

Vertex:

.

8)
$$y = -x^2 - 17$$

Axis of symmetry:

Vertex:

- 9) If the graph of the function $y = x^2$ is translated so its vertex is now at the point (4, 0), which equation represents the new function?
- 10) Given $y = \frac{1}{2}(x-5)^2 + 1$, find the following:

Axis of symmetry:

Vertex:

- 11) Write the equation in standard form and factored form given vertex form below.
 - $y = (x 2)^2 9$

Standard form:

Factored form:

12) What is the vertex of the graph of the quadratic function $f(x) = x^2 + 8x + 18?$

13) What is the range of $y = -x^2 - 6x + 14$?

14) Which graph best represents a function with a range of all real numbers less than or equal to -4?

- 15) The parent function $f(x) = x^2$ is reflected across the x-axis, vertically stretched by a factor of 3, and translated right 7 units to create g. Use the description to write the quadratic function in vertex form.
 - A) $g(x) = -3(x + 7)^2$ B) $g(x) = -3(x - 7)^2$ C) $g(x) = 7(x + 3)^2$ D) $g(x) = 3(x - 7)^2$

 \odot 2020 Kuta Software LLC . All rights reserved d. Made with Infinite Algebra 1

- 16) Which function includes a translation of 3 units to the left?
 - A) $f(x) = (x-3)^2 + 1$

B)
$$f(x) = 3x^2 + 1$$

- C) $f(x) = (x+1)^2 3$
- D) $f(x) = (x+3)^2 + 1$

17) Which equation shows a translation of 3 left and vertical compression by a factor of 2 to the graph of $y = x^2$?

A)
$$y = \frac{1}{2}(x-3)^2$$

B) $y = 2(x-3)^2$
C) $y = \frac{1}{2}(x+3)^2$
D) $y = 2(x+3)^2$

- 18) List the sequence of steps required to graph the function $f(x) = -(x + 4)^2 6$
 - A) horizontal translation 4 units to the right, vertical compression by a factor of 1, vertical translation 6 units down
 - B) horizontal translation 4 units to the left, reflection in x-axis, vertical translation 6 units down
 - C) horizontal translation 4 units to the right, reflection in x-axis, vertical translation 6 units down
 - D) horizontal translation 4 units to the left, vertical translation 6 units up, reflection in x-axis

Using the graph of $f(x) = x^2$ as a guide, describe the transformations, and then graph the function $g(x) = (x - 2)^2 + 4$.

a) g(x) is f(x) translated 2 units left and 4 units down. c) g(x) is f(x) translated 2 units right and 4 units up.

b) g(x) is f(x) translated 4 units left and 2 units down

d) g(x) is f(x) translated 4 units right and 2 units up

 ε 2020 Kuta Sofiware LLC . All rights reserve π^{5-} Made with Infinite Algebra