Exponential General Form $f(x)=a(b)^{x-h}+k$

 Mat we already know:- a is the slope
- between 0 and 1 is \qquad
- greater than 1 is \qquad
- B is growth and decay
- between 0 and 1 is \qquad
- greater than 1 is \qquad
$(-)$ is \qquad二

Exponential Vertical

$f(x)=a(b)^{x-h}+k$

Moves the graph: \qquad .

Asymptote: $y=-+$ moves the graph \qquad

- moves the graph \qquad

Quick triek decay: Loser!

$$
f(x)=a(b)^{x-h}+k
$$

Moves the graph: \qquad

+ moves the graph \qquad
- moves the graph \qquad moves the graph__

Quick trick Growth

Starts small, grows big

When " a " is negative

Growth or decay?

Explain the transformation

$$
f(x)=-2(4)^{x-3}-1
$$

1. Horizontal Shift? \qquad
2. Vertical Shift? \qquad
3. Asymptote? \qquad

Explain the transformation

$f(x)=-4\left(\frac{1}{2}\right)^{x-9}+2 \quad f(x)=\frac{3}{2}\left(\frac{1}{2}\right)^{x}+8$

Horizontal Shift?

Vertical Shift?

Asymptote?
Vertical Shift?

Asymptote?

Match graph to equation
A. $f(x)=-3\left(\frac{1}{2}\right)^{x+2}-3$
B. $4 f(x)=-2(3)^{x}+3$
C. $f(x)=2(2)^{x-6}+1$
D. $f(x)=-\frac{1}{4}(4)^{x}-2$

Domain: \qquad

Range: \qquad

Match graph to the equation
A. $f(x)=-\frac{1}{3}\left(\frac{1}{2}\right)^{x-3}+4$
B. $f(x)=-\frac{3}{2}(2)^{x+3}-2$
C. $f(x)=-3(2)^{x}+3$
D. $f(x)=-\frac{1}{3}(4)^{x+4}+2$

Domatil: \qquad

Range: \qquad
 -

Explain the transformation

$$
f(x)=3(2)^{x+2}-3
$$

Horizontal Shift?

Vertical Shift?

Asymptote?
$f(x)=\frac{3}{4}(4)^{c+2}-10$

Horizontal Shif?
Vertical Sifif?

Asymptote?
$f(x)=3(2)^{x+2}-3 \quad f(x)=\frac{3}{4}(4)^{x+2}-10$

