Determine whether the following scenarios would be best modeled using a linear or exponential model. Then, write an equation.
1.

Ms. Hunter takes off 10 points for each day an assignment is turned in late. The assignments are worth 100 points each.

$$
\text { linear } \quad y=-10 x+100
$$

- There are 200 ladybugs in a certain population. The population is decreasing by 14% per day. EXP x
- Your salary starts at $\$ 23000$ and goes up by 5% per year. EXP $\quad y=200(1-14 \%)^{x}$

$$
\begin{array}{ll}
t x P \\
y & 23000(1+5 \%)^{x}
\end{array}
$$

- A painter is going to charge $\$ 90$ for paint and $\$ 35$ an hour 10 paint your kitchen.

$$
\text { linear } y=35 x+90
$$

2. Given the situations below, identify if it is a linear or exponential model or neither. Explain your reasoning.
a. A savings account that starts with $\$ 5000$ and receives a deposit of $\$ 82$ per month.

$$
\text { linear } \quad y=825 x+5000
$$

b. The value of a house that starts at $\$ 150,000$ and increases by 1.5% per year.

$$
\text { Exp } \quad y=150,000(1+1.5 \%)^{x}
$$

c. Tina owns 4 rabbits. She expects them to double each year.
$\operatorname{Exp} y=4(2)^{x}$
d. The cost of operating Jelly's Doughnuts is $\$ 1600$ per week plus $\$.10$ to make each doughnut.
linear: $y=10 x+1600$
e. The value of John's car that depreciates 20% per year
f. The height of a ball that is thrown in the air u Shape 50 quadhatic

3. Which situation could be modeled with an exponential function?

(1) the amount of money in Suzy's piggy bank which she adds $\$ 10$ to each week
(2) the amount of money in a certificate of deposit that gets 4% interest each year
(3) the amount of money in a savings account where $\$ 150$ is deducted every month
(4) the amount of money in Jaclyn's wallet which increases and decreases by a different amount each week

Part II - Exponential Growth \& Decay Applications
4. The rent for an apartment was $\$ 6,600$ per year in 2012. If the rent increased at a rate of 4% each year thereafter, use an exponential equation to find the rent of the apartment in 2017.

$$
6600(1+490)^{5}=8029.91
$$

5. The population of a town was 14,000 in 2010. If the population decreased at a rate of 1.5% each year thereafter, use an exponential function to find the population after 10 years.

$$
14000(1-1.5 \%)^{10}=2036
$$

4. \qquad
\qquad

Graph each exponential function using a table, then identify its key characteristics.
6. $f(x)=4^{x}-7$
$a=1$

$$
b: 4
$$

$$
h: 0
$$

$$
k:-7
$$

Streten/shrink kheithey Growth/ Decay

Domain: \qquad
Range: $y>-7$
\qquad
Asymptote: \qquad

$$
y=-7
$$

7. $f(x)=6 \cdot\left(\frac{1}{3}\right)^{x}+2$
$a: 6$
b: $\frac{1}{3}$
$n: 0$
$k: 2$

streteh/shrink/heither Growth Decay

Domain: \qquad疋

Range: \qquad y-intercept: \qquad $y=8$ Asymptote: $y=7$

Strevin/Sher inflreither Growth / Decay

Domain: \qquad
Range: \qquad y-intercept: \qquad Asymptote: $y=-4$
9. $y=\frac{1}{2} \cdot\left(\frac{1}{4}\right)^{x}$
a: $\frac{1}{2}$
$b: \frac{1}{4}$
$h: 0$

$$
k: 0
$$

stretch/hrink/neither
Growth
Decay
Domain: \qquad \mathbb{R}
\qquad
Asymptote:

$$
y=0
$$

\qquad
10. $y=\frac{3}{2} \cdot 2^{x}+1$
$a: \frac{3}{2}$
b: 2
$h: 0$
$k: 1$

Strectid/Shrink/neither Growth / Decay
Domain: \qquad
Range: $y>1$
wintereme: $\left(0, \frac{5}{2}\right)$ or y -
Asymptote: $y=1$

Topic 6: Exponential Growth \& Decay Applications
EXPONENTIAL GROWTH FUNCTION
11. $y=a(1+\%)^{x}$
13. A population of a city is 422,000 and increases by 12% each year. Use an exponential function to find the population of the city after 8 years.

$$
y=422000(1+12 \%)^{8}=
$$

14. A car bought for $\$ 13,000$ depreciates at 15% per year. Use an exponential function to find the value of the car after 5 years.

$$
y=13000(1-15 \%)^{5}=5768.17
$$

15. Scott purchased a painting in 2006 for $\$ 1,250$. Since then, its value has increased by 6% each year. Use an exponential function find the value of the painting in 2017.

$$
\begin{array}{r}
2017 \\
-2006 \\
\hline 11 \\
\hline
\end{array}
$$

$$
y=1250(1+6 \%)^{11}=
$$

