1. The Mendez family just bought a home for $\$ 180,000$. If the value of the home increases at a rate of 3% per year, use an exponential function to find the approximate value of the home after 10 years.

$$
180,000(1+3 \%)^{10}
$$

A. $\$ 258,000$
B. $\$ 250,000$
C. $\$ 242,000$
D. $\$ 234,000$
2. Doug purchased land for $\$ 8,000$ in 1995. The value of the land depreciated by 4% each year thereafter. Use an exponential function to find the approximate value of the land in 2002.
A. $\$ 5,760 \quad y=8000(.96)^{7}$
B. $\$ 5,771$
C. $\$ 6,012$
D. $\$ 6,262$
3. Decide whether the word problem represents a linear or exponential function. Circle either linear or exponential. Then, write the function formula.
a. "A library has 8000 books, and is adding 500 more books eq u year."
(Linear exponential? $y=500 x+8000$
b. "A gym's customers must pay $\$ 50$ for a membership, plus $\$ 3$ for arch time they use the gym."

c. "A bank account starts with $\$ 10$. Every month, the amount of money in the account is tripled." Linear or exponential $y=$ \qquad $10(3)^{x}$ or

$$
y=10(3)^{t^{\prime}}
$$

d. "At the start of a carnival, you have 50 ride tickets. Each time you ride the roller coaster, you have to pay 6 tickets."
Lineal. or exponential?

e. "There are 20,000 owls in the wild. Every decade, the number of owls is halved."

Linear or exponential? $y=$ \qquad 20000 $20000(05)$

$$
y=a(b)^{x-n}+k
$$

- $a>1$ stretch

Name: \qquad Algebra I
$a<1$ compress $/$ Shrink
Date: \qquad Per: \qquad Unit 6: Exponents \& Exponential Functions
range: if a is positive, range is $y>k$

- $b>1$ growth

$$
b<1 \text { decay }
$$

- h : opposite of What

Part I - Graphing Exponential Functions think. leftorright
Directions: Graph each exponential function by creating a table, then identify its key characteristics.

1. $y=\left(\frac{1}{3}\right)^{x}$
$a: 1$
$b: \frac{1}{3}$
h:0

$$
k: 0
$$

plug in 0
$\operatorname{yin}_{\text {in }} 0$: $y=\left(\frac{1}{3}\right)^{0}=1$

$$
K \pm \text { up }
$$

$y=k$: asymptote
a stretch, shrink (neither)

$$
\begin{aligned}
& b=\frac{1}{3} \text { Growth }-\infty<x \text { Decay } L \\
& * \quad \text { Domain: }-\infty<\infty<\infty
\end{aligned}
$$

$$
\begin{array}{rl}
* & *=0 \\
& \text { Range: } \frac{y}{}>0 \\
\text {-intercept: } y=1 \operatorname{or}(0,1)
\end{array}
$$

$$
K=0 \text { asymptote: } y=0
$$

2. $y=(2)^{x}+6$
$a: 1$
b: 2
h:0
$k: 6$
y int: $y=2^{0}+6=7$
3. $y=8 \cdot\left(\frac{1}{4}\right)^{x}-1$

a: 8
b.
hoo
y int: $y=8\left(\frac{1}{4}\right)^{2}-1$

$$
y=7
$$

