1. For the following questions, identify the degree, the type of polynomial based on the degree, and the type of polynomial based on the number of terms.

	Degree	Type based on degree: quartic, constant, linear, cubic, quadratic	Type base on number of terms: polynomial, binomial, monomial, trinomial	Leading Coefficient	Standard Form
9					
$-2 r+7 r^{4}-5 r^{3}+4 r^{2}$					
$5 x-18 x^{2}-7$					
$9+4 r$					

Find the sum or difference.
2. $\left(7 x^{2}+4\right)-\left(3 x^{2}+2 x-6\right)$
3. $\left(4 x^{3}+x^{2}-1\right)+\left(2-x-x^{2}\right)$
4. What is the sum of $2 x^{4}+5 x^{3}-8 x^{2}-x+10$ and $8 x^{4}-4 x^{3}+x^{2}-x+2$?
5. Find the perimeter.

Multiply the polynomials. Make sure your answers are in standard form and show work for full credit.
6. $7 r s\left(6 r^{2} s-9 r s^{2}-8 s^{3}\right)$
7. $\left(5 x^{3}-6 x^{2}\right) 7 x^{4}$
8. $\left(3 x^{4}-4\right)^{2}$
9. $(8-x)(8+x)$
10. What is the area of a rectangle with a length of $x+8$ and a width of $4 x+3$?
11. What is the product of the expression represented by the model below?

x	x	8

7

12. Find the area of the shaded region:

$$
2 x+3
$$

$2 x$

13. Find the volume of a cube whose side measures $x+3$

