| Name: | | Class: | | |----------------------------------|--|--------------------------------|--| | Topic: | | Date: | | | Main Ideas/Questions | Notes | | | | Geometric
Sequences | | | | | Common
Ratio | | | | | Identifying | Determine whether the following represent geometric sequences. If yes, identify the common ratio. | | | | a Geometric
Sequence | 1. 2, 10, 50, 250, | 2. 135, 45, 15, 5, | | | | 3. 6, 18, 24, 30, | 4. 7, -14, 28, -56, | | | | 5. 80, -40, 20, -10, | 6. -9, -36, -144, -576, | | | Continuing | Given the geometric sequence, find the next three terms. | | | | Geometric | 7. 7, -21, 63,,,,, | | | | Sequences | | | | | 4 | 9. 8, 4, 2, | | | | | 105, -25, -125, | | | | Geometric
Sequence
Formula | The n^{th} term of a geometric sequence can be found using the following formula: | | | | Examples | Write the rule for the nth term, then find a ₇ . 11. 3. 9. 27 124, 20, -100, | | | | | 11. 3, 9, 27, | 12, 20, -100, | | | | | 42 400 200 400 | 14 1 5 25 | |-------------|------------|---|-------------------------------| | | | 13. 400, 200, 100, | 14. 1, 5, 25, | 15. -1, -4, -16, | 16. 729, -243, 81, | | | | 20, 27, 17, 23, | <u>.</u> | | | | | 17. 6, -12, 24, | 18. 8, 12, 18, | . 8 | The table to the left shows a car's | value for 3 years after it is | | Application | | purchased. | | | Appu | | 19. Write a rule to represent the car's | s depreciation. | | Year | Value (\$) | | | | 1 | 10,000 | | | | | 8,000 | 20. What will be the value of the car after 10 years? | | | 2 | | | | | 3 | 6,400 | . * | | | | | 100 2 | * | | | | · · | | | | | | | | Summary: _ | | | | | | | | | | | | | : | © Gina Wilson (All Things Algebra®, LLC), 2012-2017 | Name: | | Unit 6: Exponents & Exponential Functions | | |------------------------------|-------------------|--|---| | Date: | Bell: | | | | Determine whether each | | geometric sequence. | | | 1. 4, 12, 36, 108, | | 2. 5, 10, 15, 20, | | | 3. 120, -60, 30, -15, | | 4. 1, -4, 16, -64, | | | 5. 50, 35, 20, | | 6. 625, 125, 25, 5, | | | Find the next three term | ns of each geom | netric sequence. | | | 7. 4, 8, 16,, | | 8. 1, -6, 36,, | | | 9. 486, 162, 54, | | 10. 3, 15, 75,, | | | 11. 240, -120, 60, | | ,,, | - | | Write an equation to fin | nd the nth term (| of each sequence. Then find a ₉ | | | 13. 5, 20, 80, | | 14. -2, 10, -50, | | | 45 | CEE26 | 16201 | -4096, | |-----|---------|--------|--------| | LJ. | -02230, | T0204' | 7070, | ## A ball is dropped from a height of 500 meters. The table shows the height of each bounce. | Bounce | Height (m) | | |--------|------------|--| | 1 | 400 | | | 2 | 320 | | | 3 | 256 | | 19. Write a rule to represent the height of the ball after each bounce. 20. How high does the ball bounce on the 6th bounce?