Name:		Class:	
Topic:		Date:	
Main Ideas/Questions	Notes		
Geometric Sequences			
Common Ratio			
Identifying	Determine whether the following represent geometric sequences. If yes, identify the common ratio.		
a Geometric Sequence	1. 2, 10, 50, 250,	2. 135, 45, 15, 5,	
	3. 6, 18, 24, 30,	4. 7, -14, 28, -56,	
	5. 80, -40, 20, -10,	6. -9, -36, -144, -576,	
Continuing	Given the geometric sequence, find the next three terms.		
Geometric	7. 7, -21, 63,,,,,		
Sequences			
4	9. 8, 4, 2,		
	105, -25, -125,		
Geometric Sequence Formula	The n^{th} term of a geometric sequence can be found using the following formula:		
Examples	Write the rule for the nth term, then find a ₇ . 11. 3. 9. 27 124, 20, -100,		
	11. 3, 9, 27,	12, 20, -100,	

		42 400 200 400	14 1 5 25
		13. 400, 200, 100,	14. 1, 5, 25,
		15. -1, -4, -16,	16. 729, -243, 81,
		20, 27, 17, 23,	
		<u>.</u>	
		17. 6, -12, 24,	18. 8, 12, 18,
	. 8	The table to the left shows a car's	value for 3 years after it is
Application		purchased.	
Appu		19. Write a rule to represent the car's	s depreciation.
Year	Value (\$)		
1	10,000		
	8,000	20. What will be the value of the car after 10 years?	
2			
3	6,400	. *	
		100 2	*
		· ·	
Summary: _			
			:

© Gina Wilson (All Things Algebra®, LLC), 2012-2017

Name:		Unit 6: Exponents & Exponential Functions	
Date:	Bell:		
Determine whether each		geometric sequence.	
1. 4, 12, 36, 108,		2. 5, 10, 15, 20,	
3. 120, -60, 30, -15,		4. 1, -4, 16, -64,	
5. 50, 35, 20,		6. 625, 125, 25, 5,	
Find the next three term	ns of each geom	netric sequence.	
7. 4, 8, 16,,		8. 1, -6, 36,,	
9. 486, 162, 54,		10. 3, 15, 75,,	
11. 240, -120, 60,		,,,	-
Write an equation to fin	nd the nth term (of each sequence. Then find a ₉	
13. 5, 20, 80,		14. -2, 10, -50,	

45	CEE26	16201	-4096,
LJ.	-02230,	T0204'	7070,

A ball is dropped from a height of 500 meters. The table shows the height of each bounce.

Bounce	Height (m)	
1	400	
2	320	
3	256	

19. Write a rule to represent the height of the ball after each bounce.

20. How high does the ball bounce on the 6th bounce?